Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 578: 112072, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739120

RESUMO

The lining of our intestinal surface contains an array of hormone-producing cells that are collectively our bodies' largest endocrine cell reservoir. These "enteroendocrine" (EE) cells reside amongst the billions of absorptive epithelial and other cell types that line our gastrointestinal tract and can sense and respond to the ever-changing internal environment in our gut. EE cells release an array of important signalling molecules that can act as hormones, including glucagon-like peptide (GLP-1) and peptide YY (PYY) which are co-secreted from L cells. While much is known about the effects of these hormones on metabolism, insulin secretion and food intake, less is understood about their secretion from human intestinal tissue. In this study we assess whether GLP-1 and PYY release differs across human small and large intestinal tissue locations within the gastrointestinal tract, and/or by sex, body weight and the age of an individual. We identify that the release of both hormones is greater in more distal regions of the human colon, but is not different between sexes. We observe a negative correlation of GLP-1 and BMI in the small, but not large, intestine. Increased aging correlates with declining secretion of both GLP-1 and PYY in human large, but not small, intestine. When the data for large intestine is isolated by region, this relationship with age remains significant for GLP-1 in the ascending and descending colon and in the descending colon for PYY. This is the first demonstration that site-specific differences in GLP-1 and PYY release occur in human gut, as do site-specific relationships of L cell secretion with aging and body mass.

2.
Nutrients ; 15(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37049394

RESUMO

Folic acid (FA) food fortification in Australia has resulted in a higher-than-expected intake of FA during pregnancy. High FA intake is associated with increased insulin resistance and gestational diabetes. We aimed to establish whether maternal one-carbon metabolism and hormones that regulate glucose homeostasis change in healthy pregnancies post-FA food fortification. Circulating folate, B12, homocysteine, prolactin (PRL), human placental lactogen (hPL) and placental growth hormone (GH2) were measured in early pregnancy maternal blood in women with uncomplicated pregnancies prior to (SCOPE: N = 604) and post (STOP: N = 711)-FA food fortification. FA food fortification resulted in 63% higher maternal folate. STOP women had lower hPL (33%) and GH2 (43%) after 10 weeks of gestation, but they had higher PRL (29%) and hPL (28%) after 16 weeks. FA supplementation during pregnancy increased maternal folate and reduced homocysteine but only in the SCOPE group, and it was associated with 54% higher PRL in SCOPE but 28% lower PRL in STOP. FA food fortification increased maternal folate status, but supplements no longer had an effect, thereby calling into question their utility. An altered secretion of hormones that regulate glucose homeostasis in pregnancy could place women post-fortification at an increased risk of insulin resistance and gestational diabetes, particularly for older women and those with obesity.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Humanos , Gravidez , Feminino , Idoso , Lactogênio Placentário/metabolismo , Ácido Fólico , Prolactina , Alimentos Fortificados , Diabetes Gestacional/metabolismo , Estudos Prospectivos , Placenta/metabolismo , Hormônio do Crescimento/metabolismo , Glucose/metabolismo
4.
Neurogastroenterol Motil ; 34(8): e14361, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35313053

RESUMO

BACKGROUND: Specialized enterochromaffin (EC) cells within the mucosal lining of the gut synthesize and secrete almost all serotonin (5-hydroxytryptamine, 5-HT) in the body. Significantly lower amounts of 5-HT are made by other peripheral tissues and serotonergic neurons within the enteric nervous system (ENS). EC cells are in close proximity to 5-HT receptors in the ENS, and the role of 5-HT as a modulator of gut motility, particularly colonic motor complexes, has been well defined. However, the relative contribution of neuronal 5-HT to this process under resting and stimulus-evoked conditions is unclear. METHODS: In this study, we combined the use of the selective serotonin transporter (SERT) inhibitor, fluoxetine, with two models of mucosal 5-HT depletion-surgical removal of the mucosa and our Tph1Cre/ERT2 ; Rosa26DTA mouse line-to determine the relative contribution of neuronal and mucosal 5-HT to resting and distension-evoked colonic motility. KEY RESULTS: Fluoxetine significantly reduced the frequency of colonic migrating complexes (CMCs) in flat-sheet preparations with the mucosa present and in intact control Tph1-DTA colons in which EC cells were present. No such effect was observed in mucosa-free preparations or in intact Tph1-DTA preparations lacking EC cell 5-HT. CONCLUSIONS AND INFERENCES: We demonstrate that mucosal 5-HT release plays an important role in distension-evoked colonic motility, and that SERT inhibition no longer alters gut motility when EC cells are absent, thus demonstrating that ENS 5-HT does not play a role in regulating gut motility.


Assuntos
Motilidade Gastrointestinal , Serotonina , Animais , Colo , Células Enterocromafins , Fluoxetina/farmacologia , Motilidade Gastrointestinal/fisiologia , Mucosa Intestinal , Camundongos , Neurônios Serotoninérgicos , Serotonina/farmacologia
5.
Am J Physiol Gastrointest Liver Physiol ; 322(5): G523-G533, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35293258

RESUMO

Cross talk between the gastrointestinal tract and brain is of significant relevance for human health and disease. However, our understanding of how the gut and brain communicate has been limited by a lack of techniques to identify the precise spatial relationship between extrinsic nerve endings and their proximity to specific cell types that line the inner surface of the gastrointestinal tract. We used an in vivo anterograde tracing technique, previously developed in our laboratory, to selectively label single spinal afferent axons and their nerve endings in mouse colonic mucosa. The closest three-dimensional distances between spinal afferent nerve endings and axonal varicosities to enterochromaffin (EC) cells, which contain serotonin (5-hydroxytryptamine; 5-HT), were then measured. The mean distances (± standard deviation) between any varicosity along a spinal afferent axon or its nerve ending, and the nearest EC cell, were 5.7 ± 6.0 µm (median: 3.6 µm) and 26.9 ± 18.6 µm (median: 24.1 µm), respectively. Randomization of the spatial location of EC cells revealed similar results to this actual data. These distances are ∼200-1,000 times greater than those between pre- and postsynaptic membranes (15-25 nm) that underlie synaptic transmission in the vertebrate nervous system. Our findings suggest that colonic 5-HT-containing EC cells release substances to activate centrally projecting spinal afferent nerves likely via diffusion, as such signaling is unlikely to occur with the spatial fidelity of a synapse.NEW & NOTEWORTHY We show an absence of close physical contact between spinal afferent nerves and 5-HT-containing EC cells in mouse colonic mucosa. Similar relative distances were observed between randomized EC cells and spinal afferents compared with actual data. This spatial relationship suggests that substances released from colonic 5-HT-containing EC cells are unlikely to act via synaptic transmission to neighboring spinal afferents that relay sensory information from the gut lumen to the brain.


Assuntos
Células Enterocromafins , Serotonina , Animais , Eixo Encéfalo-Intestino , Colo/metabolismo , Células Enterocromafins/metabolismo , Camundongos , Serotonina/metabolismo
7.
Gastroenterology ; 160(7): 2451-2466.e19, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33662386

RESUMO

BACKGROUND & AIMS: Gastrointestinal (GI) motility is regulated by serotonin (5-hydroxytryptamine [5-HT]), which is primarily produced by enterochromaffin (EC) cells in the GI tract. However, the precise roles of EC cell-derived 5-HT in regulating gastric motility remain a major point of conjecture. Using a novel transgenic mouse line, we investigated the distribution of EC cells and the pathophysiologic roles of 5-HT deficiency in gastric motility in mice and humans. METHODS: We developed an inducible, EC cell-specific Tph1CreERT2/+ mouse, which was used to generate a reporter mouse line, Tph1-tdTom, and an EC cell-depleted line, Tph1-DTA. We examined EC cell distribution, morphology, and subpopulations in reporter mice. GI motility was measured in vivo and ex vivo in EC cell-depleted mice. Additionally, we evaluated 5-HT content in biopsy and plasma specimens from patients with idiopathic gastroparesis (IG). RESULTS: Tph1-tdTom mice showed EC cells that were heterogeneously distributed throughout the GI tract with the greatest abundance in the antrum and proximal colon. Two subpopulations of EC cells were identified in the gut: self-renewal cells located at the base of the crypt and mature cells observed in the villi. Tph1-DTA mice displayed delayed gastric emptying, total GI transit, and colonic transit. These gut motility alterations were reversed by exogenous provision of 5-HT. Patients with IG had a significant reduction of antral EC cell numbers and 5-HT content, which negatively correlated with gastric emptying rate. CONCLUSIONS: The Tph1CreERT2/+ mouse provides a powerful tool to study the functional roles of EC cells in the GI tract. Our findings suggest a new pathophysiologic mechanism of 5-HT deficiency in IG.


Assuntos
Esvaziamento Gástrico/genética , Trânsito Gastrointestinal/genética , Serotonina/deficiência , Animais , Linhagem Celular , Células Enterocromafins/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Triptofano Hidroxilase/metabolismo
8.
Int J Biochem Cell Biol ; 125: 105776, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32479926

RESUMO

Serotonin (5-HT) has traditional roles as a key neurotransmitter in the central nervous system and as a regulatory hormone controlling a broad range of physiological functions. Perhaps the most classically-defined functions of 5-HT are centrally in the control of mood, sleep and anxiety and peripherally in the modulation of gastrointestinal motility. A more recently appreciated role for 5-HT has emerged, however, as an important metabolic hormone contributing to glucose homeostasis and adiposity, with a causal relationship existing between circulating 5-HT levels and metabolic diseases. Almost all peripheral 5-HT is derived from specialised enteroendocrine cells, called enterochromaffin (EC) cells, located throughout the length of the lining of the gastrointestinal tract. EC cells are important luminal sensory cells that can detect and respond to an array of ingested nutrients, as well as luminal gut microbiota and their associated metabolites. Intriguingly, the interaction between gut microbiota and EC cells is dynamic in nature and has strong implications for host physiology. In this review, we discuss the traditional and modern functions of 5-HT and highlight an emerging pathway by which gut microbiota influences host health. Serotonin, also known as 5-hydroxytryptamine (5-HT), is an important neurotransmitter, growth factor and hormone that mediates a range of physiological functions. In mammals, serotonin is synthesized from the essential amino acid tryptophan by the rate-limiting enzyme tryptophan hydroxylase (TPH), for which there are two isoforms expressed in distinct cell types throughout the body. Tph1 is mainly expressed by specialized gut endocrine cells known as enterochromaffin (EC) cells and by other non-neuronal cell types such as adipocytes (Walther et al., 2003). Tph2 is primarily expressed in neurons of the raphe nuclei of the brain stem and a subset of neurons in the enteric nervous system (ENS) (Yabut et al., 2019). As 5-HT cannot readily cross the blood-brain barrier, the central and peripheral pools of 5-HT are anatomically separated and as such, act in their own distinct manners (Martin et al., 2017c). In this review we discuss the peripheral roles of serotonin, with particular focus on the interaction of gut-derived serotonin with the gut microbiota, and address emerging evidence linking this relationship with host homeostasis.


Assuntos
Células Enterocromafins/metabolismo , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/metabolismo , Glucose/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Serotonina/metabolismo , Adipócitos/enzimologia , Adipócitos/metabolismo , Animais , Sistema Nervoso Entérico/metabolismo , Células Enterocromafins/enzimologia , Motilidade Gastrointestinal/fisiologia , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/microbiologia , Homeostase , Humanos , Neurônios/enzimologia , Triptofano Hidroxilase/metabolismo
9.
Neurogastroenterol Motil ; 32(8): e13869, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32378785

RESUMO

BACKGROUND: Enterochromaffin (EC) cells are specialized enteroendocrine cells lining the gastrointestinal (GI) tract and the source of almost all serotonin (5-hydroxytryptamine; 5-HT) in the body. Gut-derived 5-HT has a plethora of physiological roles, including regulation of gastrointestinal motility, and has been implicated as a driver of obesity and metabolic disease. This is due to 5-HT influencing key metabolic processes, such as hepatic gluconeogenesis, adipose tissue lipolysis and hindering thermogenic capacity. Increased circulating 5-HT occurs in humans with obesity and type 2 diabetes. However, despite the known metabolic roles of gut-derived 5-HT, the mechanisms underlying the cellular-level change in EC cells under obesogenic conditions remains unknown. METHODS: We use a mouse model of diet-induced obesity (DIO) to identify the regional changes that occur in primary EC cells from the duodenum and colon. Transcriptional changes in the nutrient sensing profile of primary EC cells were assessed, and responses to nutrient stimuli in culture were determined by 5-HT ELISA. KEY RESULTS: We find that obesogenic conditions affect EC cells in a region-dependent manner. Duodenal EC cells from DIO mice have impaired sugar sensing even in the presence of increased 5-HT content per cell, while colonic EC cell numbers are significantly increased, but have unaltered nutrient sensing capacity. CONCLUSIONS & INFERENCES: Our findings from this study add novel insights into the mechanisms by which functional changes to EC cells occur at a cellular level, which may contribute to the altered circulating 5-HT seen with obesity and metabolic disease, and associated gastrointestinal disorders.


Assuntos
Dieta , Células Enterocromafins/metabolismo , Intestino Grosso/metabolismo , Intestino Delgado/metabolismo , Obesidade/metabolismo , Serotonina/metabolismo , Animais , Glicemia/metabolismo , Masculino , Camundongos
10.
Front Plant Sci ; 3: 118, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22675329

RESUMO

We have developed DNA-based genetic markers for rapid cycling Brassica rapa (RCBr), also known as Fast Plants. Although markers for B. rapa already exist, ours were intentionally designed for use in a teaching laboratory environment. The qualities we selected for were robust amplification in PCR, polymorphism in RCBr strains, and alleles that can be easily resolved in simple agarose slab gels. We have developed two single nucleotide polymorphism (SNP) based markers and 14 variable number tandem repeat (VNTR)-type markers spread over four chromosomes. The DNA sequences of these markers represent variation in a wide range of genomic features. Among the VNTR-type markers, there are examples of variation in a non-genic region, variation within an intron, and variation in the coding sequence of a gene. Among the SNP-based markers there are examples of polymorphism in intronic DNA and synonymous substitution in a coding sequence. Thus these markers can serve laboratory exercises in both transmission genetics and molecular biology.

11.
J Autism Dev Disord ; 40(1): 54-62, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19633940

RESUMO

We investigated correlates of language regression for children diagnosed with autism spectrum disorders (ASD). Using archival data, children diagnosed with ASD (N = 114, M age = 41.4 months) were divided into four groups based on language development (i.e., regression, plateau, general delay, no delay) and compared on developmental, adaptive behavior, symptom severity, and behavioral adjustment variables. Few overall differences emerged between groups, including similar non-language developmental history, equal risk for seizure disorder, and comparable behavioral adjustment. Groups did not differ with respect to autism symptomatology as measured by the Autism Diagnostic Observation Schedule and Autism Diagnostic Interview-Revised. Language plateau was associated with better adaptive social skills as measured by the Vineland Adaptive Behavior Scales. Implications and study limitations are discussed.


Assuntos
Transtorno Autístico/epidemiologia , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Transtornos do Desenvolvimento da Linguagem/epidemiologia , Adaptação Psicológica , Criança , Feminino , Humanos , Testes de Linguagem , Masculino , Variações Dependentes do Observador , Pais , Índice de Gravidade de Doença
12.
Health Promot J Austr ; 19(3): 189-95, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19053935

RESUMO

ISSUE ADDRESSED: To evaluate the effectiveness of a brief intervention using a pedometer and step-recording diary on promoting physical activity in people with type 2 diabetes or impaired glucose tolerance (IGT). METHODS: People with type 2 diabetes or IGT who attended the Illawarra Diabetes Service were invited to participate. Participants in the intervention group received a pedometer and a diary to record their daily steps for a two-week period. Both the intervention and comparison group received advice on physical activity. Physical activity levels were measured using the Active Australia Survey at baseline, and at two and 20 weeks. RESULTS: A total of 226 participants were recruited. At two-week follow-up the mean self-reported minutes of walking was significantly higher in the intervention group than the comparison group (223 minutes versus 164 minutes; p=0.01), as was the percentage of intervention participants achieving recommended levels of moderate-intensity physical activity (63.5% versus 41.8%, p=0.02) and the percentage of intervention participants achieving adequate levels of total physical activity (68.9% versus 48.0%, p=0.04). There were no differences between study groups for any physical activity measure at 20-week follow-up. CONCLUSIONS: A pedometer and a step-recording diary were useful tools to promote short-term increase in physical activity in people diagnosed with type 2 diabetes or IGT. Future studies need to examine whether a longer intervention, individualised physical activity counselling and support for achieving step goals could result in increasing physical activity over the long term.


Assuntos
Diabetes Mellitus Tipo 2/prevenção & controle , Intolerância à Glucose/prevenção & controle , Promoção da Saúde/métodos , Registros Médicos , Monitorização Ambulatorial/instrumentação , Atividade Motora/fisiologia , Educação de Pacientes como Assunto , Caminhada/fisiologia , Idoso , Estudos de Coortes , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Amigos , Intolerância à Glucose/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , New South Wales , Avaliação de Resultados em Cuidados de Saúde , Avaliação de Programas e Projetos de Saúde , Autoeficácia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...